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Abstract— Future planetary exploration missions on the sur-
face of distant bodies such as Europa or Enceladus can’t rely
on human-in-the-loop operations due to time delays, dynamic
environments, limited mission lifetimes, as well as the many
unknown unknowns inherent in the exploration of such en-
vironments. Thus our robotic explorers must be capable of
autonomous operations to ensure continued operations and to
try to maximize the amount and quality of the scientific data
gathered from each mission. To advance our technology toward
this goal, we are developing a system to maximize the science
obtained by a robotic lander and delivered to scientists on Earth
with minimal asynchronous human interaction. The autonomy
architecture consists of three main components: Shared Science
Value Maps (SSVMs), which function as an interface between
REASON (Robust Exploration with Autonomous Science on-
board) and RECOURSE (Ranked Evaluation of Contingent Op-
portunities for Uninterrupted Remote Science Exploration) for
efficient and useful scientific communication between scientists
and robot. The key advantage to this design is in its ability
to continuously operate and adapt despite the constraints of
high-latency, low-bandwith communications and an uncertain
environment which today would require ground-in-the-loop op-
erations. This paper presents the overview of our architecture
and initial results on the development of such a system. These
results will focus on progress made in developing the details
of the SSVM interface between human scientists and robotic
explorer and the ability of REASON to act on the SSVM to de-
velop plans on-board that attempt to maximize science obtained
while being guaranteed to respect any relevant system and safety
constraints.
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1. INTRODUCTION
Science operations with remote autonomy currently focus on
managing highly limited vehicle resources as well as opera-
tional impacts from direct and indirect task couplings. This
has led to an increased dependency on ground-based human
analysis and decision-making in such missions. Automated
software tools and human-machine interfaces for operational
planning and decision-making support have cut down on
the overall effort required. Examples include autonomous
science data collection software suites, e.g. AEGIS for MER
[1], [2], smart geological feature detectors [3], [4], [5], AI-
based activity planners and scheduling systems like ASPEN,
CASPER, OASIS, [6], [7], [8], [9] and for Perseverance [11],
[10], [9], [12], [13].

There have been various levels of autonomy implemented
in spacecraft systems over the years, ranging from guidance
navigation and control applications (e.g. [16], [14], [19],
[15], [18], [17]) to autonomous operations and science (e.g.
[21], [20], [22]). On deep space scientific missions, like
OSIRIS-REx [28], Rosetta [30], [29], or New Horizons [31],
[33], [32], [34] considerable expense and effort is put into
planning observations on the ground and uploading them to
the spacecraft which are then executed on-board in an open-
loop framework with minimal autonomy. If something ab-
normal occurs, observations are missed or the spacecraft may
enter safe mode which causes significant operation delays.

Overall, capable systems for particular autonomous tasks
already exist and they let ground operations manage the
traditional ‘single-pathway’ science plans in relatively well-
understood environments. However, such systems are not
extendable to missions in remote unexplored environments
like ocean worlds and icy moons, where opportunistic
multi-contingency autonomous on-board decision-making is
needed in the face of evolving uncertainties and science.
Furthermore, a fundamental issue missing in the state-of-
the-art is a way for scientists to be able to naturally “talk”
to their robotic counterparts without the barrier of complex
sequencing and command interfaces.

Our proposed solution, in this paper, seeks to address the
main issues that prevent current work from being put into
use on an ocean worlds exploration lander. We propose to
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Figure 1: The proposed effort will design and implement (1) the SSVM interface between (2) the REASON on-board planner
and (3) the RECOURSE scientist ground system

design, develop, and demonstrate an autonomy architecture
illustrated in Fig. 1 that consists of three main components:
SSVM (Shared Science Value Maps), which function as
an interface between REASON (Robust Exploration with
Autonomous Science on-board) and RECOURSE (Ranked
Evaluation of Contingent Opportunities for Uninterrupted
Remote Science Exploration) using for efficient and useful
scientific communication between scientists and robot. In
particular, the combination of REASON and RECOURSE
using SSVMs as an interface has been explicitly designed
to successfully handle high-latency, low-bandwidth commu-
nications while incorporating scientists’ inputs and continu-
ously gathering and downlinking valuable science data. Our
solution focuses on creating a near-future flight system im-
plementation that provides confidence and transparency about
how the autonomous system is performing and the ability for
operators to update the performance if desired. Our system
effectively does not allow safe-modes to stop science, since it
always has further actions prioritized and ready to execute.

This paper outlines our initial design decisions and inves-
tigations into implementation of our proposed architecture.
As such, we discuss in turn each of the main components -
REASON, SSVMs, and RECOURSE - and finally show some
initial implementation results in NASA’s OceanWATERS vir-
tual testbed.

2. REASON
REASON (Robust Exploration with Autonomous Science
on-board) is the on-board component of our proposed au-
tonomy architecture. This system is responsible for all the
critical tasks taking place aboard the lander, all of which
can be broadly categorized into two main modules, namely:
1) Science Activity Planner, and 2) Downlink planner, as
shown in Fig.2.

Science Activity Planner

The Science Activity Planner is responsible for autonomously
determining both a high-level discrete sequence of actions
(task plan) as well as the low-level continuous trajectory
(motion plan) of moving parts of the lander to allow the
system to efficiently interact with the environment and collect
more scientific data per activity segment. The sequence of ac-
tions satisfy the formally specified tasks given to the system,
while also accounting for the current world-configuration and
environment of the lander [42]. To obtain an abstraction of
the lander, we first discretize the actions of the system to a
set of motion primitives specific to each instrument. The plan
from the high-level planner is then used as a guide for low-
level continuous planner for each motion primitive [43]. For
some specific action primitives, such as moving the robotic
manipulator from a start configuration to a goal configuration,
it is critical to generate a continuous trajectory that also
avoids collision with any obstacles in the environment. Using
the Science Activity Planner we can readily interpret the
high-level, verify the safety of the low-level plan, and guar-
antee task completion at the high-level. The Science Activity
Planner is comprised of two main planning components: the
task planner and the motion planner as shown in Fig. 3.

Task Planner—A scientific expert can formally define a task
specification that will define a goal. The task planner (High-
Level Planner) takes in a task goal (specification) and return
a discrete sequence of actions that the real system can then
execute. The task specification is generated by the scientists
on ground in the form of a temporal logic formula such
as LTLf (Linear Temporal Logic over Finite Traces) [44].
Using a task in the form of a logical formula is beneficial
for unambiguous interpretation, which allows the scientific
experts to mathematically decide if a task has been completed
or violated. A scientist may have a conceptual idea of
what the system should accomplish, however it is necessary
convert this idea into a logical task specification that can only
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Figure 2: Data flow between different components of the proposed autonomous system

be interpreted one way. Temporal logic refers to logic that can
reason over time. Specifically, LTLf refers to tasks that can be
satisfied in finite time. Using a temporal logical specification
allows the scientist to be much more expressive with what
the system should accomplish and how the system should go
about accomplishing the task [49] [50] [51] .

In order for the task planner to combine a task specification
with the physical constraints of the autonomous system and
environment, a discrete system model must be provided. This
model, referred to as the system abstraction [45] [46], should
reason over discrete states that include information about the
status of the lander, as well as parts of the environment that
the lander interacts with. Transitions between states in this
model determine the physical capability and constraints of
the system. These transitions can take the form of discrete
actions, referred to as an motion primitive.

Using both the temporal logic task specification as well as the
system abstraction, the task planner determines a sequence of
high-level actions that will take the system from the current
(initial) state to a final state in a manner that satisfies the
given task specification without violating any task-specific
and physical constraints of the system.

Motion Planner—The motion planner (Low-Level Planner)
is responsible for low-level continuous path planning. The
lander may have tools equipped that have moving parts and
require low-level controls. The purpose of the motion planner
is to determine a continuous trajectory for a tool to follow
that will prevent collision with other parts of the lander itself,
or obstacles in the environment. Using a motion planner
can provide safety guarantees for the determined trajectory.
The lander concept being used in the OceanWATERS (Ocean

Figure 3: Synergistic Planning Diagram from [43].

Worlds Autonomy Testbed for Exploration Research & Sim-
ulation, [41]) comes equipped with a robotic manipulator,
and a movable camera and communication module. For
safely controlling the robotic manipulator, it is assumed that
the motion planner is provided with information of obstacle
boundaries, including collision boundaries of the lander. The
motion planner will look for a collision free solution between
the start configuration and a goal configuration. A sampling-
based motion planning algorithm, such as RRT, is used to
determine the trajectory for the manipulator [47] [48]. For the
camera and communication module, a simple linear trajectory
can be implemented that can pan and tilt the apparatus to the
desired pose, while staying within the safety limits. For the
purposes of this architecture, it is assumed that the movable
tools on the lander also have stable low-level controllers that
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can safely follow a desired trajectory.

Synergistic Planning Framework—The purpose of the Syner-
gistic Planning Framework [43] is to allow the task planner to
better reason about the physical capabilities of the robotic ma-
nipulator and to accomplish tasks more smartly. For example,
the system model might include an action to move the robotic
manipulator between two states, however the transition might
be physically infeasible due to the placement of obstacles. A
naive approach is to replan for this trajectory until we find
a valid motion plan to execute this motion primitive. This
approach suffers from computation time and fails to account
for difficulty is planning this particular continuous trajectory.

The synergistic framework introduces a Coordinating Layer
which allows for the low-level motion planner to inform the
high-level task planner and reasons quantitatively about each
motion primitive. In this framework, the high-level planner
computes and feeds an initial action sequence to the motion
planner. If the motion planner fails when trying to plan for
a certain action, the cost of executing that action is increased
in the task planner. Since the task planner searches for an
optimal sequence of actions to complete the task, increasing
the cost of executing a certain action will encourage the high
level planner to avoid planning for that action. This process
is repeated until a sequence of actions is found where all
actions in the sequence have a low-level motion planning
solution. The Synergistic Planning Framework visualized in
Fig. 3 displays the interaction between the task planner and
the motion planner [43].

Downlink planner

The goal of the downlink planner is to maximize the science
information sent back to Earth, while successfully handling
the high-latency and low-bandwidth communication limita-
tions between the lander and the Earth-based ground stations.
This module is responsible for two main tasks on-board
the lander: Downlink data prioritization and Downlink data
scheduling.

Downlink data prioritization—After the lander has collected
data according to the plan generated by the science activity
planner (as described earlier), the downlink planning module
will compute the science value of the collected data on-
board. This process is called downlink data prioritization.
Downlink prioritization can be achieved by methods such as
Target Signature and Novelty detection methods [52], [53],
[54]. Methods for downlinking selective data or processed
data (such as Image Masking) are also being considered to
reduce downlink bandwidth requirements [53], [55].

Downlink data scheduling— After science value has been
assigned to the data collected by the lander (using a suitable
downlink prioritization scheme), this data will be scheduled
for downlinking on the basis of a weighted measure between
science value, scientist’s preference and data size.
A list of high-level types of data expected from the lander
have been identified (Table 1) and a set of ground rules to
govern the downlink data scheduling has been constructed as
shown below:

• Data with high science value (computed on the basis of
the weighted measure as described above), will have high
downlink scheduling priority.
• If two types of data are found to have same science value,
any of the data can be downlinked first.
• Fault data and information/notification about incomplete
crucial tasks needs to transmitted with High priority.

• Data asked by the scientists have downlink scheduling
priority of ‘Medium to High’, depending on the data’s science
value as compared to other data.
• Downlink scheduling priority of regular health check data
as well as heavy data such as videos or high resolution photos
can vary from ’Low to Medium’, depending on other high
priority transmission requirements.

These rules assume that the science value of the lander’s
observed data and scientist’s preference are already known
and the data size has not been considered here.

Based on the above rules and the types of data given in Table
1, an example downlink scheduling scheme is constructed
that, given the science value of the lander data and the
scientist’s priority, decides the sequence in which the data
should be downlinked for maximum science return, as shown
in Table 2.

It is to be noted that, the constructed rules as well as the
downlink data scheduling metric will be continually updated
as more clarity is attained on the downlink data desired by the
scientist and the data size.

3. SSVMS
In most exploration missions, detailed decisions are made
on the ground about which tasks were to be executed when,
where, and with which instrument, taking into account low-
level operational/resource constraints and inter-task depen-
dencies, etc. On the contrary, by effectively utilizing an ab-
stracted symbolic representation of the science activities, we
can delegate the handling of operational/resource constraints
to on-board autonomy and easily describe spatial/temporal
dependencies between tasks. This allows the REASON mod-
ule to determine actual activity sequences to be performed
by considering the information uplinked from the ground and
ambient (e.g. the Sun location and surrounding temperature)
and internal (e.g. voltage and current of each instrument)
information of robotic explorers.

In Figs. 1 - 2 we see that the SSVMs (Shared Science Value
Maps) are situated as this interface between the ground and
robot. So what are they exactly? It turns out that much
of our early work has been in trying to identify appropriate
representations that are useful as such an interface. Regard-
less of the particular format that is ultimately chosen, the
SSVMs are defined as symbolic expressions with scientists’
science preferences transmitted from the Earth to the lander,
an example is depicted in Fig.4.

In essence, SSVMs are common operating pictures for co-
ordination shared by scientists and autonomy. As pictured,
SSVMs can be imagined as a map generated and updated
for each instrument/science investigation after each activity
segment that is easy to interpret and interactive. Such an ab-
straction of the exploration space for the various instruments
- whether that is surface location or pointing direction or time
- allows a framework for science activities to be planned, and
the results to be returned to scientists on the ground.

In short SSVMs capture scientist’s preferences and rules to
be communicated to the robot to inform REASON’s planning
and execution, as well as to inform what acquired science data
is most valuable to downlink. Then a report about the robot’s
executed activities can be captured by updating the “status” of
scientist’s requested activities. Additionally, modification of
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Lander’s internal data Lander’s external data

• Instrument status.
• Instrument fault notifications.
• Current, Voltage, Pressure, Temperature
of each instrument.

• Observation data.
• Opportunistic data.
• Photos/Videos of surroundings.
• Information on the level of task
completion by the planner.

Table 1: High level types of downlink data expected from lander. Includes data asked by scientists and regular health check
data.

Lander’s internal data Scheduling Priority Overall scheduling priority

Instrument status (Regular health check) 2 Needs to be sent regularly. But if
no instrument fault is detected, this
can be skipped depending on other
high priority transmission
requirements.

Current, Voltage, Pressure, Temperature of
internal equipments. (Regular health
check)

2 Same as above.

Instrument status (Asked by scientists) 3 Depends on scientist’s priority as
compared to other data.

Current, Voltage, Pressure, Temperature of
internal equipments. (Asked by
scientists)

3 Depends on scientist’s priority as
compared to other data.

Instrument fault status 5 Instrument faults needs to be
reported urgently.

Lander’s external data Scheduling Priority Overall scheduling priority

Photos/Videos of data (Opportunistic
science)

2 Depends on science value of
observed data.

Photos/Videos of data (Asked by
scientists)

3 Send updates to past photos/videos,
if the data is already observed. Else
send new (low resolution)
photos/videos.

Observed interesting data (Opportunistic
science).

4 Depends on Science Value of the
data.

Observation data (Asked by scientists) 4 Depends of scientist’s priority as
compared to other data.

Highly anomalous observed data
(Opportunistic science).

5 Depends on science values of both
asked data and observed data. If
they are equal, then send asked
data first then immediately send the
observed opportunistic data.

Information indicating level of
completeness of a task by the planner.

5 Lander needs to downlink details
of any incomplete portion of task
so that ground can re-work its next
uplink sequence accordingly.

Table 2: An example downlink data scheduling metric on a scale of 1-5, 1 meaning lowest downlink priority and 5 meaning
highest downlink priority (assuming data science value and scientist’s preference are given)

activity segments performed by the REASON module can be
confirmed in the RECOURSE module as described in Sec.4
along with the reasoning for the particular executed plan,
which improves the reliability and transparency of remote
autonomy.

4. RECOURSE
In the presence of low-bandwidth and high-latency commu-
nication constraints, there are limited opportunities for end-
users (scientists, i.e. exploration domain experts who are
not robotics/autonomy experts) and robot autonomy (REA-
SON module) to interact. In addition, the user interfaces
(UIs) developed in previous space exploration missions [6],
[35] are too complex for mission scientists to operate and
demand too much mental workload. Taking these issues
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Figure 4: Illustration of SSVM concept definition and updating process.

into consideration, a novel ground-based system tool called
RECOURSE (Ranked Evaluation of Contingent Opportuni-
ties for Uninterrupted Remote Science Exploration) has been
developed. The primary aims of RECOURSE are to design a
schedule (i.e. activity segments processed in the REASON
module) that is expected to maximize the science return
with intuitive operations and to bridge a gap of situational
awareness of unknown environments between human and
autonomy. RECOURSE is designed with an asynchronous
communication framework in mind, as depicted in Fig. 5.
Uploading scientist preferences on a staggered timeline with
time gaps between when related data is downlinked allows
scientists to constantly provide input to the robot without
time pressure influencing the execution. In the following, the
main two components of RECOURSE, the Uplink UI and the
Downlink UI, are described.

Uplink UI

User interfaces (UIs) for uplinking are ground-side tools for
transmitting signals from Earth to remote robotic explor-
ers. As mentioned in [35], since these UIs developed in
previous space exploration missions are too complicated to
manipulate, there is a need to develop user-friendly ones for
non-robotic experts, and in order to perform more science-
driven operation, the desired UI may need to be able to allow
scientists to specify search targets in a simple and intuitive
way. And, as explained in Sec.2, it may be desirable for
activity segments that are transmitted to robotic explorers
to guarantee the completion of tasks. Furthermore, since
the survey targets are the surfaces of ocean worlds and icy
moons such as Europa or Enceladus, each communication
takes a long time and the mission lifetime is short, thus it
is not possible to modify the schedule while checking the
status of the robot autonomy and surrounding environments
sequentially as in the case of near-Earth exploration. Hence,
it is desirable to have an (even rough) idea of how the robot’s
state will transition after executing an activity segment. This
will help scientists avoid generating schedules that clearly
fail tasks. Based on these motivations, the Uplink UI in

RECOURSE has been prototyped as illustrated in Fig.6. This
UI allows mission scientists to specify high-level science
targets via semantic sketches, and these targets are registered
as new atomic propositions (APs) as shown in top-left of
Fig.6. Then, by using a formal language (linear temporal
logic, LTL [36]), it is possible to generate activity segments
that can investigate objects of interest while guaranteeing the
constraints of missions and instruments (Fig.6, top-right).
The REASON module prevents robot autonomy from en-
tering safe mode for a long period of time in case of task
failure/unprecedented accidents, however we prefer to avoid
entering such mode as much as possible for efficient explo-
ration. Thus, a high-fidelity physical and visual simulator (in
this case, the OceanWATERS simulator described in Sec.5),
which reproduces realistic environment on Europa, can be
directly accessible on the Uplink UI so that mission scientists
can immediately check the possible behavior of the robot
autonomy (Fig.6, bottom-left) and the simulation log (Fig.6,
bottom-right) when it executes LTL-based tasks.

Downlink UI

The Downlink UI is intended to summarize what actions
happened and why they were taken by the lander. The UI
has three main uses cases to achieve these goals: visualizing
received data, explaining differences in the uplinked and
executed plan, and reproducing actions taken by the lander.
After data from an activity segment is received, it will be
separated into two categories. Internal state data such as
instrument temperature, current, and voltage will be dis-
played in a manner intuitive to an engineering audience while
external data such as instrument collected information will
be presented in a manner conducive to a scientific audience.
The executed plan may differ from the uplinked plan due
to external and internal factors and therefore it is important
to denote and explain these differences. A display directly
contrasting the two plans illustrates the differences in the
execution order. This visual is useful to a trained logician
but does not provide detailed insight to the scientists of
the motivation behind why REASON chose to perform one
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Figure 5: Coordinated SSVM updates between lander platform and ground science teams.

Figure 6: Prototype of the Uplink UI.

task over another. Another section of the UI will focus on
explaining the contrasting plans using information provided
by REASON. The exact manner of achieving explainability
is left for future research building upon previous works ex-
ploring formal plan explanation [37] [38]. Additionally task
information such as a name, description, and its success or
failure status will be shown to the user. An option to simulate
the executed plan on the OceanWATERS simulator will allow
scientists to view an approximation of the actions the lander
took. Downlinked, discritized trajectory data from the lander
will be used to create the simulation. The simulation intends
to help scientists better understand the underlying autonomy.

5. OCEANWATERS EXAMPLES
OceanWATERS (Ocean Worlds Autonomy Testbed for Ex-
ploration Research & Simulation) is a simulation test-bed
for a lander concept on an icy moon [41]. The simulation

environment uses ROS Melodic with Gazebo and MoveIt
RViz [39] [40] simulation environments. A visualization of
the Gazebo environment can be seen in Fig.7.

Instrument Tools

The simulation test-bed comes with many built in tool func-
tionality for simulating different robotic actions. The robotic
components of the lander include a robotic manipulator and
a revolving camera/communication module. Each of these
tools can be controlled by simulating trajectory information.
A drill and a digger tool are attached to the end-effector of the
robotic manipulator. The test-bed has built in robotic actions
that can be used to move the drill and the digger.

Examples

The Synergistic Planning Framework was implemented in the
OceanWATERS simulation test-bed, using the robotic arm.
The purpose of this case study is to both demonstrate the ef-
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Figure 7: OceanWATERS Gazebo

(a) Demonstration Setup (b) Demonstration Task

Figure 8: OceanWATERS setup and task demonstration with
2 objects and 4 location of interest.

ficacy and practicality of the synergistic planning framework,
as well as demonstrate the capability of the OceanWATERS
simulation test-bed. A visualization of the demonstration
setup can be seen in Fig.8a .

In this setup, five discrete locations were defined and labeled
L0, L1, L2, L3, L4. There are two objects that can be
moved by the robotic manipulator: a small cylinder and a
small sphere. Initially the cylinder is in L0 and the sphere is
in L1. The task specification is given as ”move the cylinder
to L2 first, then to L3, or move the sphere to L4. For the
interested readers, the LTLf formula for this task is

F (cL2 ∧ F (cL3)) ∨ F (cL4) (1)

Here F is an temporal operators that reasons over tasks
that need to completed ‘Eventually’ and ∧,∨ are binary
conjunction and disjunction operators respectively. Symbols
cL2, cL2, and cL4 are Boolean variables that indicate if object
has been placed in that location. Arrows depicting either
method of completing the task are shown in Fig.8b. Since the
system can complete the task by simply moving the sphere

t

Figure 9: Demonstration Without Obstacle

h

Figure 10: Demonstration With Obstacle

from L1 to L4, it will initially default to that solution. This
execution is shown in Fig.9.

A second scenario is demonstrated where an obstacle is
introduced above the sphere object. The discrete model of
robotic manipulator does not have any information about the
challenge of picking up the sphere. However, as can be
seen, the obstacle makes it very challenging, if not impossible
to properly pick up the sphere. The Synergistic Planning
Framework learns about the challenge of picking up the
sphere through iterations, then eventually returns a solution
that moves the cylinder to L2 and then L3. The execution
of this task can be seen in Fig.10. This is an equally valid
way of completing the task, however it requires more actions,
making it less optimal initially.

6. CONCLUSION
In this paper, we have proposed a new autonomy architecture
that is expected to be implemented in deep space exploration
mission (e.g. surface investigation of distant bodies such as
Europa and Enceladus) in the near future. This architecture
consists of three unique components, REASON (on-board
robot autonomy executing LTL-based activity segments), RE-
COURSE (user-friendly interfaces for accelerating science-
driven operation), and SSVMs (symbolic expressions with
scientists’ science preferences for coordination shared by
scientists and autonomy), which make it possible to carry
out tasks in a way that maximizes science return even in
uncertain and dynamic environments where human interac-
tion is very limited due to low-bandwidth, high-latency, and
limited mission lifetimes. As parts of the ongoing progress,
we present the prototype of the Uplink UI that comprises
RECOURSE, and employ Synergistic Planning Framework,
which constitutes REASON, on the OceanWATERS testbed,
a high-fidelity simulator that mimics the surface environment
of Europa, to showcase its robustness with respect to planning
with physical constraints of the multiple tools and accommo-
dating for uncertainties in low level motion plans for tools
individually or synergistically.
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