Karan Muvvala

Research Summary _____

My research centers around developing algorithms with performance and safety assurances to enable assured and intelligent autonomy. My interests include Formal Methods, task planning, neural network verification, and safe controller synthesis. I aim to build safe autonomous systems to operate efficiently in dynamic and unstructured environments.

Education_____

Ph.D. in Aerospace	Engineering Sciences - Autonomous Systems	3.95/4.0	
University of Colorado	Boulder - Ann and H.J. Smead Aerospace Engineering Sciences	05/21 - Present	
Research Advisor Grant	search Advisor Dr. Morteza Lahijanian NASA COLDTech - Developing provably safe and robust planning algo. for autonon landers for efficient exploration of ocean worlds like Europa (Link)		
M.S. in Mechanical I University of Colorado	Engineering - Robotics and Systems Design Boulder - Paul M. Rady Mechanical Engineering	3.94/4.0 Conferred 05/21	
Research Advisor Research Topic	dvisor Dr. Morteza Lahijanian Opic Human-aware Strategy Synthesis for Robotic Manipulators using Regret Games (Link)		
B.E in Mechanical E University of Mumbai	ngineering	<i>8.36/10.0</i> Conferred 06/18	
Research Expe	rience		
Graduate Research	Assistant - Ph.D.	Boulder, CO	
Assured Reliable Intera	tive Autonomous Systems Group at CU Boulder (ARIASystems)	05/21 - Present	
• Developing an efficient applied to human-ro	ent symbolic regret-minimizing strategy synthesis framework for scala bot collaboration scenario.	able reactive synthesis	
 Formulated a novel works using Stochas 	verification framework to certify behavior of autonomous systems repr tic Barrier Functions.	resented as neural net-	
 Synthesizing a minin defined safety const 	nally-invasive controller that induces provable probabilistic guarantee raints.	s on violating the user-	
M.S. Thesis		Boulder, CO	
Assured Reliable Intera	tive Autonomous Systems Group at CU Boulder (ARIASystems)	08/19 - 05/21	
 Developed a novel a ronments.(Video) 	nd general regret based reactive synthesis framework for robots oper	ating in dynamic envi-	
 Synthesized an optin anteeing task compl 	mal strategy for the robot that explores possible cooperation with othe etion and spending no more than the user-defined energy budget.	her agents while guar-	

Research Internships

Research Intern - Proactive and Robust Planning under Uncertainty

Planning and Decision Making R & D - General Motors

• Developed & validated algorithms to augment learning-based (RL) planners to be robust to perceptual uncertainties for Autonomous Vehicles.

Summer Research Intern - Fast Behaviors Project

Florida Institute for Human and Machine Cognition (IHMC)

- Developed high-level complex behaviors for Humanoid Robots in Java that combined perception, planning, and controls.
- Implemented an efficient human-like kicking motion controller for the Atlas robot.

Publications

2023

K. Muvvala, A. Wells, M. Lahijanian, L. Kavraki, M. Vardi, "Stochastic Games for Interactive Manipulation Domains", IEEE International Conference on Robotics and Automation (ICRA) (submitted), 2024

K. Muvvala, M. Lahijanian, "Efficient Symbolic Approaches for Quantitative Reactive Synthesis with Finite Tasks", IEEE International Conference on Intelligent Robots and Systems (IROS) (to appear), 2023

J. McMahon, M. Lahijanian, N. Ahmed, K. Muvvala, et al., "REASON-RECOURSE Software for Science Operations of Autonomous Robotic Landers", IEEE Aerospace Conference, 2023

2022

R. Mazouz*, K. Muvvala*, A. Babu, et al., "Safety Guarantees for Neural Network Dynamic Systems via Stochastic Barrier Functions ", Advances in Neural Information Processing Systems (NeurIPS), 2022. - *Equal Contribution

K. Muvvala, P. Amorese, and M. Lahijanian, "Let's Collaborate: Regret-based Reactive Synthesis for Robotic Manipulation", IEEE International Conference on Robotics and Automation (ICRA), 2022

J. McMahon, M. Lahijanian, N. Ahmed, K. Muvvala, et al., "Expert-Informed Autonomous Science Planning for In-situ Observations and Discoveries", IEEE Aerospace Conference, 2022

K. Muvvala, M. Lahijanian, "Near-Optimal Regret-Minimizing Strategies For Human-Aware Robotic Manipulation", **RSS Workshop** on Risk Aware Decision Making: From Optimal Control to Reinforcement Learning, 2022

2021

K. Muvvala, M. Lahijanian, "Reactive Synthesis for Human-aware Robotic Manipulation using Regret Games", RSS Workshop on Robotics for People: Perspectives on Interaction, Learning and Safety, 2021

Skills.

Python, Java, MATLAB, C++, ETFX Languages Software ROS, moveit!, Solidworks Frameworks PRISM, PRISM-games, TensorFlow, PyTorch, CVXPY

Pensacola, FL 05/19 - 08/19

Detroit, MI

05/23 - 08/23

Scholarships_____

2023	IROS 23 IEEE/RAS Member Support Program
2022	Inclusion@RSS Fellowship
2022	ICRA 22 Travel Grant by IEEE RAS
2021	Aerospace Eng. Sciences Departmental Fellowship
2021	CU Financial Aid
2020	$\label{eq:constraint} Diversity \& \mbox{ Inclusion Scholarship - Mechanical Eng.}$

Open Source Tools_____

Let's Collaborate - Reactive synthesis without Regret

Python, C++, Cython, Binary & Algebraic Decision Diagrams, LTLf, LTL

- First Symbolic framework for efficient quantitative reactive synthesis. (Github)
- First correct-by-construction Regret-Minimizing Reactive Synthesis tool. (Github)

NeuralNetControlBarrier

Julia, Python, Matlab, Docker

• Safety certification and control for Neural Network Dynamic Models via Stochastic Barrier Functions. (Github)

Correct-by-Synthesis Reinforcement Learning

General Reactivity (1), Slugs, Python

• Correct-by-synthesis maximally permissive strategy synthesis for RL agent with temporal constraints. (Github)

Professional Membership _____

2019 - Present	IEEE & IEEE-Robotics and Automation Society (RAS)
2020 - Present	IEEE Computer Society (CS)
2021 - 2022	American Institute of Aeronautics and Astronautics (AIAA)
2016 - 2019	American Society of Mechanical Engineers (ASME)
2017 - 2018	Indian Society of Heating, Refrigeration, and Air Conditioning Engineers (ISHRAE)

Outreach_____

IEEE Volunteer Leadership Training Program Fellow	2022
Graduate Peer Mentoring	2020 - Present
Sitting with BIPOC - Event at CU GEARRS Fall 20 Mechanical Symposium	2020
Teach Robotics - St. Vrain Valley School District	2020
Core Organizing Committee - Robotics Networking event	2019